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Abstract. The survival of autocatalytic agents in hostile environments depends on their ability to adapt
their spatial configuration to local fluctuations. A model of diffusive reactants that extract the advantage
of spatio-temporal fluctuations associated with the stochastic wandering of diffusive catalysts is discussed.
Two arguments are presented for the basic processes behind this extraordinary behavior. In the first, the
local colonies that evolve around any spatially advantageous region overlap in space-time and an infinite
directed percolation cluster emerges. The second argument is based on the return probability of a diffusive
agent that is shown to yield finite density of active “oases” with an exponentially large contribution to the
reactant population. The different range of applicability of these survival lower bounds to small systems
is discussed.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 64.60.Ak
Renormalization-group, fractal, and percolation studies of phase transitions – 64.60.Ht Dynamic criti-
cal phenomena

1 Introduction

The stochastic effects associated with microscopic noise
in spatially extended reactive systems have recently at-
tracted a lot of interest [1–5]. These effects have been
considered in a variety of contexts, including biochemical
networks dynamics, ecology, population dynamics, disease
control, and chemical reaction kinetics. The common anal-
ysis of these systems is based on rate equations, i.e., de-
terministic partial differential equations that assume large
concentrations of individual reactants that are believed to
allow for the use of continuous variables. Crossing to an
agent based, spatially extended, stochastic picture, one
finds a variety of new effects, unseen by the “mean field”
deterministic formulation. In particular, the survival (or
extinction) conditions for reactants may be shifted, lead-
ing to a new type of extinction transition. It was hypothe-
sized that, generically, these transitions fall into the equiv-
alence class of the directed percolation transition [6].

In previous publications [5,7], the quite unexpected
resilience of a system that contains autocatalytic agents
and immortal catalysts has been considered, and adapta-
tion of the autocatalytic fluctuations to diffusive noise has
been shown to lead to results that differ strongly from the
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PDE predictions. The system contains two species: cata-
lyst agents (A) wandering around, and diffusive reactants
(B) admitting an internal decay mechanism and yielding
an offspring only in the presence of the catalyst. It turns
out that the reactants may survive even below the mean
field limit due to the Poissonian fluctuations associated
with the discrete nature of the catalysts. These fluctua-
tions allow (in a large enough system) regions to have a
positive growth rate even if the decay process is very fast.
As this exponential growth is spatially correlated to ran-
domly occurring catalyst hotspots (“oasis” regions), the
reactants tend to concentrate around these favored regions
and multiply even further. These results turn out to be of
importance for a wide range of applications, and a few
generalizations of this “AB model” have been discussed
recently [8].

This surprising result and its importance for under-
standing the resilience of various systems raises an essen-
tial question: what are the crucial assumptions underlying
this result? In particular, the requirement for an arbitrar-
ily large area of the surface is of relevance to real systems.
In statistical mechanics terms, this evokes the issue or the
commutativity between infinite volume and infinite time
limits. It was shown [9] that, quite generally, there is a
difference between the average and the typical local con-
centrations of the reactants in this system, and the average
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may reflect rare events of zero measure, such that it re-
mains finite, or even diverges, while the probability for
survival at a point may approach zero. In light of these
results, the need for a simple theory that connects the
rare events into the generic scenario is obvious. This pa-
per is devoted to the presentation of two theoretical argu-
ments that ensure the proliferation of the reactants below
the rate equation threshold and are applicable, at least at
some parameter range, to small systems.

The first argument presented here is based on the plau-
sibility assumption used to translate the AB model to a
model of directed percolation. The second argument is
even more radical, as it depends on the growth at a fixed
location, taking into account the diffusive correlations of
the catalysts.

2 The AB model

In the AB model [5,7], the disagreement between the re-
alistic stochastic process and the deterministic PDEs that
pretend to describe it is emphasized for a very simple and
generic system. The system includes two species: an im-
mortal catalyst A only randomly diffusing in space, and
a reactant agent B decaying with rate δB and proliferat-
ing in the presence of A-s at rate βBNA, where NA is the
number of A agents at the reactant spatial location (local
density of A). Both A and B undergo diffusion with rates
DA and DB respectively. Schematically, the local reactions
considered are:

B −→ � (1)
B + A −→ B + B + A.

The continuum approximation of this process involves the
mean-field rate equations for the densities of A and B,
a(x, t) and b(x, t) respectively. The rate equations are,

∂a(x, t)
∂t

= DA∇2a(x, t)

∂b(x, t)
∂t

= DB∇2b(x, t) − (δB − βBa(x, t))b(x, t), (2)

admitting a very simple solution. Since only A diffuses, the
catalyst density becomes spatially uniform µA (where µA

is the average A density) after some time, and the dynamic
of the reactants B is given by the linear equation,

b(x, t) = DB∇2b(x, t) − Mb(x, t), (3)

where M ≡ δB − βBµA is the decay/growth rate of the
system, depending on its sign. Thus, the mean field the-
ory predicts a phase transition at M = 0. For positive
M , the reactant concentration decays exponentially, while
negative M yields exponential growth (proliferation). Of
course, in realistic systems, one expects some saturation
mechanism that prevents explosion, perhaps in the form
of B agents competition for resources. However, for sim-
plicity’s sake, in the present work we neglect such a term,
so the system admits two attractors, b = 0 and b = ∞.

The unexpected resilience of the B population in the
agent based version of the AB model can be traced to the
following mechanism: any arbitrary B death rate (leading
to arbitrary local exponential decay) can be balanced by
the growth induced by a large enough A aggregate at the
same location. This effect could, in principle, be washed
away by the fact that, due to A diffusion, the large A
aggregates are short lived (the probability for an A to
remain a time t at a give location decays with t). However,
there are 3 main effects that support the survival of the
B population:

1. even if an A aggregate decays, there is a certain prob-
ability that, by the time of its decay, another A ag-
gregate will arise in its neighborhood. This will ensure
the descendance of the B’s generated by the first ag-
gregate;

2. the exponential growth of the B population around
large enough A aggregates compensates in the growth
expectation the exponential decay of the aggregate sur-
vival probability;

3. in one or two dimensions, the probability for an A that
left the aggregate to eventually return is 1.

Each of these processes is affected differently by the fi-
nite size. In the following sections, we will study each of
them separately. We will first address and quantify the
first effect, and then address the last two.

We briefly review here the main features of the AB
model for discrete agents [5,7]. On each site x there
exists at any time t an arbitrary number NA(x, t) of
particles of type A and an arbitrary number NB(x, t)
of particles of type B. Given an initial configuration
{NA(x, 0), NB(x, 0)}, one iteratively generates the subse-
quent configurations {NA(x, t), NB(x, t)} according to the
following rules:

1. the particles A never “die” or “get born”. They can
jump on any of the d-dimensional sites neighboring
their current location with a hopping probability of
DA/2d for each neighbor;

2. the particles B can jump to any of the neighbors, with
a hopping probability of DB/2d;

3. the B’s “die” with probability per unit time δB;
4. any pair of A and B located on the same lattice site can

generate a new B with probability per unit time βB.

In the following sections, some of the argumentation deals
also with the generalized AB model, where A creation-
annihilation processes are also allowed, keeping µA con-
stant. The particular form of these reactions is A → ∅ at
rate δA and ∅ → A at rate βA, such that µa = βA/δA.

3 Proliferation based on static catalysts

As noted in [7] and [9], in a case of static catalysts
(DA = 0) proliferation always takes place for an infinite
size system. Random distribution of the catalysts A im-
plies spatial Poissonian fluctuations of the local growth
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rate, and this, in turn, implies that for large enough sam-
ples there will be finite density of “oases” (spatial regions
where the overall growth rate is positive) no matter how
large δB. If there is no dynamic for the catalysts, at least
a finite fraction of these sites becomes “active” (i.e., yield
a flourishing colony of reactants), resulting in the prolif-
eration phase.

3.1 Single oasis and colony dynamics

The case of local growth of diffusive reactants on a spatial
domain with a single active site may be solved and yields a
simple and intuitive framework. For the sake of simplicity,
we present an off lattice evaluation with some assumptions
about the shape and size of the active site, but a possible
generalization for the other cases is straightforward and
the basic intuition is the same. At the end of this subsec-
tion, the translation of the results to a discrete lattice is
presented. Clearly, even if the A agents are standing still,
the treatment presented here is approximate, as it neglects
the discrete nature of the B agents. However, as long as
the proliferation leads to a large number of reactants at
the oasis — and this must be the case for an unbounded
model — this inattention is not consequential.

The growth around an active site is described by the
equation,

∂b(x, t)
∂t

= ˜DB∇2b(x, t) + g(x)b, (4)

where g(x) is a parameter that incorporates all the pa-
rameters that effects the growth, g(x) = βBNA(x) − δB.
A single active site of radius R corresponds to:

g(r) =
{

g0 r < R
−g1 r > R

(5)

where g0 and g1 are positive. This linear problem may be
solved (see [8], Appendix A) using spherically symmetric
functions in the physical dimensions.

Equation (4) is linear and its solution involves the pre-
sentation of a complete set of eigenfunctions φn(r) with
the corresponding eigenvalues Γn. Accordingly, any ini-
tial state b(x, 0) may by written as a superposition of the
eigenfunction b(x, 0) =

∑

n αnφn and its time evolution is
given by,

b(x, t) =
∑

n

αnφneΓnt. (6)

Solving (4), (which is equivalent to the Schrödinger equa-
tion for a single quantum particle in a potential well) one
finds that there are two types of eigenfunctions. Local-
ized eigenfunctions decay exponentially out of the “oa-
sis”, φn(r) ∼ exp(−κnr), and admit positive eigenvalues,
while extended eigenfunctions have zero support on the
oasis and allow only negative values of Γ . The profile of a
positive eigenfunction is thus,

φn(r, t) ∼ e−κr+Γnt, (7)

so a level point (a point of constant height φ(r, t) = const.
on the profile) travels away from the oasis with velocity
v = Γ/κ. If the B agents dynamic is approximated as a
continuum dynamic [like in (4)] with a finite threshold, this
threshold dictates the level point discussed above. How-
ever, as long as the concentration of the reactants on the
oasis is large (compared to unity), the velocity is thresh-
old independent. Clearly, our interest lies not in all the
spectrum of the linearized evolution operator; but rather,
only in its fastest growing (maximal Γ ) state.

Let us consider now the details of the fastest grow-
ing state in the physical dimensions. First we note that
in 1d there is always a localized solution with positive
eigenvalue, independent of the reactants diffusion con-
stant, while in three dimensions this is not the case,
and for any oasis there is no bound state if the reac-
tant diffusion is large. In 2d the situation is marginal,
since this is the critical dimension for the return of a ran-
dom walker: there is a positive eigenvalue for each oa-
sis, independent of the reactant diffusion rate, but for
very weak island (g0R

2/ ˜DB � 1) the growth rate Γ =
˜DBexp(−4 ˜DB/g0R

2)/R2 approaches zero exponentially
as diffusion grows. Another peculiarity of the d = 2 case
is logarithmic corrections to the exponential decay of the
spatial profile far away from the oasis and the correspond-
ing correction to the velocity of the colony.

In the limit of a “strong” oasis (g0R
2/ ˜DB 	 1) it

is possible to write down the asymptotic velocity of the
colony’s front as,

v =
√

˜DB(g0 − θ2 ˜DB/R2), (8)

where θ = π/2, [z(1)
0 ] and π in one, two and three dimen-

sions correspondingly ([z(1)
0 ] = 2.402... is the first zero of

the zero order Bessel function).
The translation of the above results to the discrete

lattice dynamics is trivial, as the basic length scale of is
now the lattice constant l0. The diffusion coefficient of
the lattice is just a hopping rate and is related to the
continuum diffusion by DB ≡ ˜DB/l20. The velocity, again,
is given by the continuum velocity multiplied by l0, where
DB should be plugged instead of ˜DB. The radius of the
oasis is of order l0, but a better approximation for the
coefficient is θ2 ∼ 2d.

3.2 Finite size effects for autocatalytic growth
on heterogeneous substrates

Following the analysis of the single oasis problem, let us
discuss, still for immobile catalysts, the effects of finite
sample size and sample to sample fluctuations, where in
this subsection a lattice of N spatial sites is considered. As
shown in the last section, if the number (m) of catalysts
at a point is larger than some critical number mc (that
depends on the dimension of the system and the reactants’
death rate) an oasis occurs where a B colony grows. The
presence of subthreshold catalyst density around the oasis
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has a minor effect on θ2 and is ignored. As the A-s are
randomly distributed, the probability to find m catalysts
at a lattice point obeys the Poisson distribution:

P (NA(x, t) = m) =
e−µAµA

m

m!
. (9)

Thus, the probability for an active oasis is the sum over (9)
from mc to infinity:

P (m > mc) = 1 − Γ (mc, µA)
Γ (mc)

. (10)

If the number of lattice sites is much larger than 1/P (m >
mc), one expects a finite density of active sites in each
random sample. However, if the number of lattice sites
is much smaller than 1/P (m > mc), only (exponentially)
rare samples will be “active” (i.e., contain at least one
oasis), while all the others are inactive, and the typical
case (determined by the inactive samples) differs from the
average (determined by exponentially rare fluctuations).
In terms of the lattice constant l0, the typical distance
between oases is R ∼ l0 (P (m > mc))−d, and if the prob-
ability to find an active site is small, P (m > mc) may be
approximated by Pmc .

4 Directed percolation and the proliferation
phase

As already discussed in [7,9], a large enough sample with
frozen catalysts always supports the proliferation of the re-
actants, as there is no bound (in this model) for the growth
of a colony based on a single oasis. The case of diffusive
catalysts is different: here the oasis is unstable, since any
individual local fluctuation of the A concentration should
decay in time. The main question here concerns the life-
time of a fluctuation. Given µA, the average number of
catalysts per site, and a fluctuation size m > mc, what
is the typical time until m decays to mc? In a case of
continuous field diffusion with random initial conditions,
this problem is known as the problem of persistence dif-
fusion. The probability of a fluctuation to maintain its
sign (i.e., that it never crosses the average) until t has
been shown to obey a power law distribution, P (t) ∼ t−θ,
where θ depends upon the dimension of the system [10,11].
This power law behavior has also been demonstrated for
the probability of not crossing arbitrary values that differ
from the average, with different θ [12]. However, the prob-
lem considered here differs from these persistent diffusion
cases as it involves the stochastic wandering of discrete
agents (the A-s). At equilibrium, the system is invariant
under time translation, correlation functions depend only
on time differences, and the stochastic noise leads to a
crossover from a power law (far from equilibrium) to an
exponential decay at equilibrium. This crossover will be
discussed elsewhere, but for the sake of this work, let us
try to find a lower bound to the persistence of the oa-
sis. We look only at oases just above the critical number
of catalysts mc, such that, as soon as a single catalyst

leaves, the B-s growth rate at this spatial location be-
comes non-positive. Thus, the lower bound for the lifetime
is simply the inverse hopping rate at the critical density
∼1/mcDA. This is so because, in the worst case, any cat-
alyst that leaves the oasis never returns, and the diffusion
plays the same role as death rate for the A-s in the active
site. This idea may be extended to include other processes
in the catalysts’ dynamic; for example, if the A-s decay
with probability δA the lower bound is 1/[mc(DA + δA)]
and so on.

4.1 From single oasis to directed percolation

At this point, we gather all the information from the above
sections in order to build a directed percolation picture
for the AB extinction transition. In the limit of an infinite
sample we already have a finite density, 1/P (m > mc), of
active sites, and the lifetime of such an active site is ap-
proximated by a constant 1/mcDA. In a space time dia-
gram the active sites may thus be approximated as “rods”
of constant length. Around each of these rods a B-colony
is developed, with a size that grows linearly in time, so
these colonies (in 1+1 dimensions, for example) look like
triangles centered around each of these rods.

Within this picture, the problem of extinction-
proliferation transition is translated into the problem of
directed percolation of the space time triangles (in 1+1,
or cones in 2+1 etc.). The density of the triangles is deter-
mined by the A agents’ statistics, their length (lifespan) by
the catalysts dynamics, and their width by the reactants
growth and diffusion rate.

As described above, given the parameters δB, µA, βB

and the hopping rate for each of the species, a site is ac-
tive if NA(x) � δB/βB (as explained above, in 2d, this
condition is sufficient for the existence of an oasis, where
a colony may grow). An estimate for the lifetime of such
an island is βB/[δB(δA + DA)]. We now take the limit
of “strong” oasis, (8), in order to get an order of mag-
nitude estimation. Given that the number of catalysts
needed at a single spatial point is not large, fluctuations of
O(1) correspond to the strong oasis limit, assuming that
g0 − 2dDB is, again, of order one. If this is the case, the
velocity of the colony front is

√

DBβBl20, and thus the ra-
dius of the colony when the oasis disintegrated is R0 =
βB

√

DBβBl20/[δB(δA +DA)]. On the other hand, the typ-
ical distance between neighboring oases scales like the in-
verse probability, given by equation (9), and in 2d for rare
oases this will be given roughly by R1 = exp[δB/(2βB)].
The filling fraction of the sample is given by the ratio
p = (R0/R1)d. Thus, the fate of the system is deter-
mined by the relation between p and pd

c , the critical filling
fraction for directed percolation at certain dimensionality.
Clearly, p grows with βB and DB, as the size of the colony
around the oasis is larger. p decays with δB, δA and DA,
the limiting factors for the size and the lifetime of the
colony.

As we have already mentioned, this argument only
sketched approximate “lower bound” conditions for the
survival of the reactants below the mean field threshold.
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Fig. 1. Effect of scale. The mean field description of the AB
model (either with or without catalyst death) is only a function
of M = δB − µAβB . These systems perform very differently in
the strong (low values of µA and high values of βB) and weak
(high values of µA and low values of βB) coupling limits. A clear
difference is the effect of the system size. Each curve represents
the system size required for survival for a given value of M
(δB = 1.0 and βBµA are 0.05, 0.2 and 0.5 in the long dashed,
full and dashed-doted line respectively). At high values of µA,
a large system is required in order to find a fluctuation large
enough to allow survival. At low values of µA, only single A
agent is required to allow survival.

The effects of rare events may lead to the appearance of
long living, localized colonies as discussed in the next sec-
tion. Our discussion also neglects the space-time corre-
lation among islands: as the diffusion of an A catalyst
around the location of large concentration is correlated,
the lifetime of a colony may thus be larger then expected
as the reactant concentration follows the catalysts.

An important example may be found in the case of
single A based proliferation, i.e., where a site is active
(admits local growth) if it contains a single catalyst. In
this case, the considerations presented above regarding the
lifetime of an oasis are irrelevant, since there are strong
correlations between the spatial location of different oases
(in fact, the next active point appears in an adjusting
site due to the diffusive wandering of the catalyst). This
phenomenon manifests itself in Figure 1: at the single A
regime, the extinction transition is almost independent of
the system size (the critical size grows linearly with the in-
verse density of the catalysts). In the opposite regime, i.e.,
where an active site requires a large number of catalysts,
the corresponding fluctuations are exponentially rare, im-
plying strong dependence on the system size. In the next
section, this single A proliferation based limit will be con-
sidered in detail.

5 Local criteria for population growth

In the previous section, we have described a B-population
survival mechanism based on a directed percolation anal-
ysis. That analysis neglected the spatio-temporal correla-
tions in the number NA(x, t) of catalysts A at various sites

x and times t. The effect of an A diffusing away from a
site x was treated as the irreversible death of that A for
what concerned the estimation of the number of B’s on
that site (denoted by NB(x, t)).

In this section we estimate the expected value of
NB(x, t) (E[NB(x, t)]), while taking into account the
probability, Qd(t), that an A originating at time t = 0
on site x will return to x at least once in the time in-
terval [0, t]. The main result of the present section is a
sufficient condition,

βB > βmin = DA(1 − Qd(∞)), (11)

for the (at least) exponential growth (rather then decay)
of the average number of B’s in the system. As Q1(∞) =
Q2(∞) = 1 (see Fig. 2), in 1 and 2 dimensions βmin = 0,
thus the total B population always growth.

To show that equation (11) indeed constitutes a suf-
ficient condition for an increase of the average B popu-
lation, the following lower bound arguments are invoked.
First, we neglect the contribution to NB(x, t) of B’s born
on a different site y 
= x or B-s returning to x after hav-
ing left it. Thus, for the purpose of the present section,
we take the “lower bound” assumption that an agent B
disappears once it leaves its site of origin x. Therefore,
the effect over a time interval [0, t] of the B’s diffusion
is simply exp{−tDB}, similar to the effects of B’s death
exp{−tδB). In the absence of catalysts, the lower bound
for the expected B population NB(x, t) would be:

E[NB(x, t)] ≥ NB(x, 0)exp{−t(δB + DB)}. (12)

In the presence of catalysts, we also limit ourselves to
the contribution of the A-s that, at t =0 were located
at x and neglect all other catalysts. Thus, from now on,
NA(x, t) is the number A’s that reside on x at time t
but also resided on x at t =0. Since those (and previous)
assumptions work against the B population survival, they
are legitimate in the computation of a sufficient condition
for the B growth/survival.

The jumps, deaths, and births of different B-particles
are independent [9]. Therefore their effect on E[NB(x, t)]
factorizes, and we can evaluate their contributions sepa-
rately and only in the end multiply them to obtain the
necessary condition of growth for E[NB(x, t)], using the
inequality,

E[NB(x, t)] ≥ NB(x, 0) exp{−(δB + DB)t}

×E[exp(βB

∫ t

NA(x, τ)dτ)]. (13)

Furthermore, the A-particles perform simple random
walks independent of one another. Their contributions in
the product (13) factorize into the product of NA(x, 0)
single A contributions,

E[NB(x, t)] ≥ NB(x, 0) exp{−(δB + DB)t}

×
NA(x,0)

∏

k=1

(

E[exp(βB

∫ t

nk(x, τ)dτ)]
)

, (14)
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Fig. 2. A dynamics in 1, 2 and 3 dimensions. The drawn curves
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from a given point would return to this point at least once
within a period of t. The probability of not returning con-
verges rapidly to zero in one dimension, more slowly in two
dimensions, and converges to a finite values in three and more
dimensions.

where nk(x, τ) equals one when the k’th A agent is present
at x and zero otherwise.

Let us concentrate on a single agent (say, the agent
with k = 1). Defining,

Z(t) ≡ E[exp(βB

∫ t

n1(x, τ)dτ)],

equation (14) may be written as:

E[NB(x, t)] ≥ NB(x, 0) exp{−(δB + DB)t}Z(t)NA(x,0).
(15)

So the sufficient condition for average growth is:

(δB + DB)t < NA(x, 0) lnZ(t). (16)

Clearly,

E[exp(βB

∫ t

n1(x, τ)dτ)] ≥ E[exp(βBτ1)], (17)

where τ1 is the time between t = 0 and the first jump of
the A agent out of x = 0. The probability distribution
function for τ1 is exponential, P (τ1) = DAexp(−DAτ1),
and hence, by integrating over τ1,

Z(t) ≡ E[exp(βB

∫ t

n1(x, τ)dτ)] ≥ DA[e(βB−DA)t − 1]
βB − DA

.

(18)
Now let us make a distinction between two situations. If
βB > DA we can get the lower bound directly. For a large
enough t, lnZ(t) ∼ (βB−DA)t up to a additive, time inde-
pendent term. Thus, a sufficient condition for an average
growth will be

NA(x, 0)(βB − DA) > (δB + DB) (19)

or
NA(x, 0) > N0 = (δB + DB)/(βB − DA). (20)

Conversely, if DA > βB, one has to consider the effect
of multiple returns of the same A-agent to x. We now
estimate the contribution to Z(t) of the return of a single
A to its initial location. If the condition stated above (11)
holds,

Qd(∞)
1

1 − βB/DA
> 1, (21)

one can define a large enough return time τ2, followed by
sojourn time τ1, such that the contribution of such single-
return events to Z exceeds some predetermined value
exp(η) (with η > 0):

exp(η) = Qd(τ2)
[1 − e(βB−DA)τ1 ]

1 − βB/DA
> 1.

The contribution of a succession of N such events to Z is
exp(ηN). Since this contribution is positive for each τ2+τ1

step, and since all steps are independent, the fact that the
expectancy of Z(t) grows in each such step ensures that
E(Z(t)) will grow indefinitely. As N = t/(τ2 + τ1), the
contribution to Z is now growing in time,

Z ∼ exp
(

η

τ1 + τ2
t

)

(22)

where η is some numerical factor. This yields the average
local proliferation condition,

NA(0) η/(τ1 + τ2) > δB + DB. (23)

Since the A-s are initially Poissonianly distributed, there
will always be a finite density of points for which NA(x, 0)
satisfy the condition (23).

6 Conclusions

The discrete proliferating model studied in the present pa-
per reveals the importance of spatial effects and sample
size on the survival of an autocatalytic system in stochas-
tic environments. Beyond the conceptual issues, there are
many concrete applications of the present work to bi-
ology, economics, and social sciences. For instance, the
present results shed new light on the dangers posed by the
shrinking and fractionalizing of natural habitats upon the
survival of dependent species. The same mathematical for-
malism represents the problems related to the sustainabil-
ity of the present world economic system [16], where the
effects of the market size and globalization are presently
under close scrutiny and heated debate. In the current
work, we have proposed a mathematical treatment of the
habitat/economy size effects on systems’ resilience and
sustainability. As opposed to many cases where the mean
field arguments (using average agents density or a contin-
uous distributions, with rate equations as a mathematical
tool) are applicable, the dynamics of the present systems
may be dominated by rare spatio-temporal fluctuations.
This means that the survival of species or economies un-
der hostile conditions is still possible through the rare oc-
currence of lucky events. Two survival mechanisms have
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been pointed out: the first, and the simplest, relies on
the presence of a static, random distribution of catalysts,
where the relevant spatial scale is inversely proportional
to the chance of finding a single oasis. If the environmen-
tal conditions are not static, any oasis is bound to decay,
and the survival is based on percolation of the reactants
among the short-lived favored locations. In that case, the
relevant spatial scale needed for survival depends on the
space-time inhomogeneity; to allow for the directed per-
colation survival, the system should be much larger than
the radius of a single colony R0. Note that, in this regime,
even at infinite system size the B population may become
extinct if the average catalyst density falls below the per-
colation threshold. The second survival mechanism, con-
sidered in the previous section, is based on rare events
where a dynamic environment remains, by chance, static
for a relatively long time. While such events are expo-
nentially rare, their contribution to the survival of the re-
actants is exponentially large. The present work suggests
the performance of a meta analysis that would provide the
probabilities of survival in specific systems in the presence
of various constraint. For example, one may compare liv-
ing habitats consisting of disconnected patches with sys-
tems of the same total size, but made of a single connected
component, as has been recently done in various experi-
ments [14]. We present, in other publications, some studies
that confront the present theoretical results with empir-
ical data from markets [15], economics [16], population
dynamics and other branches of science.

Appendix A: Difference between A diffusion
and A death

6.1 Dynamics of non-static catalyst

Let us look without loss of generality at the population
NA(t) = NA(x = 0, t), and assume an initial value of
NA(0). In contrast with the dying A agents, the diffus-
ing A catalysts can come back at time t with a probabil-
ity PR(DAt). The cumulative probability asymptotically
reaches 1 in one and two dimensions and saturates at finite
values for higher dimensions (Fig. A.1). The only differ-
ence between diffusion and A annihilation is that diffusing
A can return, while dying A never do. The A dynamics
can be approximated by:

˙a(t) = −(δA + DA)a(t) + βA + DAµA

+
∫ τ=t

τ=0

a(t − τ)PR(DAτ)e−δAτdτ. (24)

Let us assume a large A fluctuation a(0) 	 muA. We
can ignore the contribution of the mean and obtain the
following function for the A population,

a(t − τ) = a(t)e(DA+δA−DAC(DAτ))τ , (25)
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Fig. A.1. 1D combination of A agent death and diffusion.
One can see that the precise solution (dashed lines) and the
solution ignoring A returns (full lines)are similar until a tenfold
decrease in A and then the full solution converges to a line with
a slope similar to the one of the destruction rate only.

where C(DAτ) represents the fact that diffusing A agents
can return. 24 then becomes:

˙a(t)=−(δA+DA)a(t)+βA+DAµA

+ a(t)
∫ τ=t

τ=0

e(δA+DA−DAC(DAτ))τPR(DAτ)e−δAτdτ.

(26)

If we define C(DAt) to be the function solving,

C(DAt) =
1

DA

∫ τ=t

τ=0

e(DA(1−C(DAτ)))τPR(DAτ)dτ, (27)

and assume that C(t) is changing slowly, we obtain from
25 and 27 an approximate solution for 24:

˙a(t) ∼ −(δA + DA(1 − C(DAt)))a(t) + βA + DAµA (28)

e(C(t)−1)t dC(t)
dt

= PR(1, t). (29)

This produces a step like function for C(t) and an approx-
imate solution of:

a(t) = (a(0) − βA

δA
) ∗ e−(δA+DA(1−C(DAt)))t +

βA

δA
. (30)

One can clearly see in Figure A.1 that this estimate pro-
duces a very close approximation of the precise process.
Thus, the only difference between diffusion and A annihi-
lation is a correction to the diffusion term, which lessens
its destructive effect. Interestingly, C(t) is small for low
values of t and rises sharply to unity for high values, such
that, for short times, the effect of diffusion is similar to
death, while for long times it is completely negligible. In
order to reach the limit where diffusion can be canceled,
one has to wait for a time long enough that the aggregate
size would decrease more than tenfold. In a very large
system, this situation is realistic, as shall be further dis-
cussed, but in typical systems, the probability of finding
such aggregates is very small. If we only treat the short
time limit, we can assume that C(t) = 0 and treat diffu-
sion and death equally.
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Appendix B: Directed percolation:
full treatment

Here we reproduce and enlarge a part of the results men-
tioned in [8]. The directed percolation argument raised
in [8] is that the B population in the system will sur-
vive if and only if the d dimensional volume containing
a B population surrounding an A aggregate will contain
a new A aggregate when the original A aggregate disap-
pears. More precisely, the argument is that the B density
distribution around an A aggregate is approximately:

b(r, t) ∼ b(0, 0)e(βBa(t)−δB−DB)t−
√

(βa(t)−DB )
DB

r
. (31)

The B isodensity line advances with a velocity of
(βBa(t)−δB−DB)

√

(βa(t)−DB )
DB

. The condition for growth at x = 0 (the A

aggregate position) is a(t) > δB+DB

βB
. Thus, given an ini-

tial A density, we can approximate that the B population
will grow at x = 0 until

tend =

ln

(

a(0)− βA
δA

δB+DB
βB

− βA
δA

)

(δA + DA)
(as we approach the mean field survival threshold, tend

approaches infinity, reproducing the mean field survival).
The maximal island radius can be approximated by:

r(t) =
∫

(βBa(t)−δB−DB)>0

(βBa(t) − δB − DB)
√

(βa(t)−DB)
DB

dt. (32)

If we set a(0) = m, we can substitute the value of a(t) to
obtain:

r(t) =
∫ tend

0

(βB(m − µA)e−dAt + βBµA − δB − DB)
√

(βBm−µA)e−dAt+βBµA−DB)
DB

dt,

(33)
where we have defined: µA = βA/δA and da = δA + DA.
In a space time diagram the active sites may be approxi-
mated as “rods” of constant length. Around each of these
rods a B-colony is developed. The extinction-proliferation
transition is translated into a directed percolation ques-
tion. Taking into account only A aggregates with at least
m A-agents, the average radius between such aggregates
in d dimensions can be approximated by:

Rd
m = e

βA
δA m!

δA

βA

m

. (34)

The survival condition thus becomes 1 :

r(tend(m))d > Pce
βA
δA m!

δA

βA

m

. (35)

1 This equation has an analytical solution, defining x =
δB

|βBµA−DB |. and w = βBm−DB)
|βBµA−DB | to obtain f(x, w) = 2(

√
w −

√
x) + (1 − x)(ln(

√
w−1√
w+1

) − ln(
√

x−1√
x+1

) or f(x, w) = 2(
√

w −√
x) + m0x

δB
(arctag

√
w − arctag

√
x) depending on the sign of

βBµA − DB):f(x, w) > DA+δA√
|DB(βBµA−DB)|0.7

√

eµAm! 1
µA

m

In order for the system to survive, there should be at least
one such m. For a given set of parameters (δB , βB, µA, DB)
there is a cutoff value of δA +DB, under which the infinite
system survives, given by

maxm<mV r(tend(m))d − Pce
βA
δA m!

δA

βA

m

> 0, (36)

where mV is the highest value of m fulfilling V P (a(0, t) =
m) 	 1. A close inspection of the solution of (36) shows
that for high βB and low µA values, the system is domi-
nated by low values of m and the effect of increasing the
system size rapidly saturates. For low βB values and high
µA values, the system is dominated by high m values. The
presence of such high m values is a function of the system
size. In such systems, the B survival probability will keep
increasing with system size.
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